24 research outputs found

    Monocular SLAM system for MAVs aided with altitude and range measurements: a GPS-free approach

    Get PDF
    A typical navigation system for a Micro Aerial Vehicle (MAV) relies basically on GPS for position estimation. However,for several kinds of applications, the precision of the GPS is inappropriate or even its signal can be unavailable. In this context, and due to its flexibility, Monocular Simultaneous Localization and Mapping (SLAM) methods have become a good alternative for implementing visual-based navigation systems for MAVs that must operate in GPS-denied environments. On the other hand, one of the most important challenges that arises with the use of the monocular vision is the difficulty to recover the metric scale of the world. In this work, a monocular SLAM system for MAVs is presented. In order to overcome the problem of the metric scale, a novel technique for inferring the approximate depth of visual features from an ultrasonic range-finder is developed. Additionally, the altitude of the vehicle is updated using the pressure measurements of a barometer. The proposed approach is supported by the theoretical results obtained from a nonlinear observability test. Experiments performed with both computer simulations and real data are presented in order to validate the performance of the proposal. The results confirm the theoretical findings and show that the method is able to work with low-cost sensors.Peer ReviewedPostprint (author's final draft

    Vision-based SLAM system for MAVs in GPS-denied environments

    Get PDF
    Using a camera, a micro aerial vehicle (MAV) can perform visual-based navigation in periods or circumstances when GPS is not available, or when it is partially available. In this context, the monocular simultaneous localization and mapping (SLAM) methods represent an excellent alternative, due to several limitations regarding to the design of the platform, mobility and payload capacity that impose considerable restrictions on the available computational and sensing resources of the MAV. However, the use of monocular vision introduces some technical difficulties as the impossibility of directly recovering the metric scale of the world. In this work, a novel monocular SLAM system with application to MAVs is proposed. The sensory input is taken from a monocular downward facing camera, an ultrasonic range finder and a barometer. The proposed method is based on the theoretical findings obtained from an observability analysis. Experimental results with real data confirm those theoretical findings and show that the proposed method is capable of providing good results with low-cost hardware.Peer ReviewedPostprint (published version

    Design and Development of Aerial Robotic Systems for Sampling Operations in Industrial Environment

    Get PDF
    This chapter describes the development of an autonomous fluid sampling system for outdoor facilities, and the localization solution to be used. The automated sampling system will be based on collaborative robotics, with a team of a UAV and a UGV platform travelling through a plant to collect water samples. The architecture of the system is described, as well as the hardware present in the UAV and the different software frameworks used. A visual simultaneous localization and mapping (SLAM) technique is proposed to deal with the localization problem, based on authors’ previous works, including several innovations: a new method to initialize the scale using unreliable global positioning system (GPS) measurements, integration of attitude and heading reference system (AHRS) measurements into the recursive state estimation, and a new technique to track features during the delayed feature initialization process. These procedures greatly enhance the robustness and usability of the SLAM technique as they remove the requirement of assisted scale initialization, and they reduce the computational effort to initialize features. To conclude, results from experiments performed with simulated data and real data captured with a prototype UAV are presented and discussed

    EKF-Based Parameter Identification of Multi-Rotor Unmanned Aerial VehiclesModels

    No full text
    This work presents a method for estimating the model parameters of multi-rotor unmanned aerial vehicles by means of an extended Kalman filter. Different from test-bed based identification methods, the proposed approach estimates all the model parameters of a multi-rotor aerial vehicle, using a single online estimation process that integrates measurements that can be obtained directly from onboard sensors commonly available in this kind of UAV. In order to develop the proposed method, the observability property of the system is investigated by means of a nonlinear observability analysis. First, the dynamic models of three classes of multi-rotor aerial vehicles are presented. Then, in order to carry out the observability analysis, the state vector is augmented by considering the parameters to be identified as state variables with zero dynamics. From the analysis, the sets of measurements from which the model parameters can be estimated are derived. Furthermore, the necessary conditions that must be satisfied in order to obtain the observability results are given. An extensive set of computer simulations is carried out in order to validate the proposed method. According to the simulation results, it is feasible to estimate all the model parameters of a multi-rotor aerial vehicle in a single estimation process by means of an extended Kalman filter that is updated with measurements obtained directly from the onboard sensors. Furthermore, in order to better validate the proposed method, the model parameters of a custom-built quadrotor were estimated from actual flight log data. The experimental results show that the proposed method is suitable to be practically applied

    Delayed monocular SLAM approach applied to unmanned aerial vehicles

    Get PDF
    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.Peer Reviewe

    Delayed monocular SLAM approach applied to unmanned aerial vehicles

    No full text
    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.Peer Reviewe

    Variation of the relation between ellipse <i>S</i><sub><i>c</i></sub> axes (<i>b</i>/<i>a</i>).

    No full text
    <p>Left plot: average tracking time for a candidate point. Middle plot: average number of candidate points being tracked at each frame. Right plot: average total time per frame.</p

    Results for flight trajectory <i>F</i><sub><i>a</i></sub>.

    No full text
    <p>Results for flight trajectory <i>F</i><sub><i>a</i></sub>.</p

    Coordinate systems: the local tangent frame is used as the navigation reference frame <sup><i>N</i></sup>.

    No full text
    <p>Monocular camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter.</p
    corecore